Analysis of Schizophrenia Data Using A Nonlinear Threshold Index Logistic Model
نویسندگان
چکیده
Genetic information, such as single nucleotide polymorphism (SNP) data, has been widely recognized as useful in prediction of disease risk. However, how to model the genetic data that is often categorical in disease class prediction is complex and challenging. In this paper, we propose a novel class of nonlinear threshold index logistic models to deal with the complex, nonlinear effects of categorical/discrete SNP covariates for Schizophrenia class prediction. A maximum likelihood methodology is suggested to estimate the unknown parameters in the models. Simulation studies demonstrate that the proposed methodology works viably well for moderate-size samples. The suggested approach is therefore applied to the analysis of the Schizophrenia classification by using a real set of SNP data from Western Australian Family Study of Schizophrenia (WAFSS). Our empirical findings provide evidence that the proposed nonlinear models well outperform the widely used linear and tree based logistic regression models in class prediction of schizophrenia risk with SNP data in terms of both Types I/II error rates and ROC curves.
منابع مشابه
Determination of Financial Failure Indicators by Gray Relational Analysis and Application of Data Envelopment Analysis and Logistic Regression Analysis in BIST 100 Index
Financial failure prediction models have been developed by using Logistic Regression (LR) analysis from traditional statistical methods and Data Envelopment Analysis (DEA), which is a mathematically based nonparametric method over the financial reports of the companies traded in The Istanbul Stock Exchange National 100 Index (BIST 100) between the years 2014-2016. In the development of these mo...
متن کاملA Nonlinear Model of Economic Data Related to the German Automobile Industry
Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. But it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. Such evidence appeared in the German automobile industry as a consequence of the financial crisis in 2008/09, which influenced exchange rates and a...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملNew evidence for the relationship between government size and economic growth in Iran: an application for a three-regime Non-linear threshold regression model
abstract: Over the past two centuries, the role of government and the composition of government spending have changed in most countries of the world. Theoretically, there is no consensus among economists about the size of the state and the degree of state interference in the economy. On the one hand, one can observe classics and market's proponents who believe in a small government and little ...
متن کاملThreshold F-policy and N-policy for multi-component machining system with warm standbys
The integration of marketing and demand with logistics and inventories (supply side of companies) may cause multiple improvements; it can revolutionize the management of the revenue of rental companies, hotels, and airlines. In this paper, we develop a multi-objective pricing-inventory model for a retailer. Maximizing the retailer's profit and the service level are the objectives, and shorta...
متن کامل